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INTRODUCTION 
 

Grammar:  structure or rule-system which describes/explains the phenomena of a 

language, constructions. 

 

-Motivated by linguistic concerns. 

-But also by computational concerns. 

 

-a grammar supports the judgements about the data on the basis of which it is built. 

-processing of sentences is rapid, online. 

 

Suppose you have found a 'super grammar' for English, it works really well. 

And then some nasty mathematician proves that your grammar cannot support a 

mechanism for making the judgements that it is based on. 

Or some nasty mathematician proves that your grammar cannot support an online 

processing mechanism to process online even the sentences that we know we process 

online.   

In that case, you have a super grammar, but apparently not the one that native 

speakers of English use, because they do have the judgements they do, and they do 

process online what they process online. 

 

These are questions about the power of grammatical operations. 

If the grammar doesn't have enough power, you can't describe what you want to 

describe. 

If the grammar has to much power, it becomes a system like arithmetics: you can 

learn to do the tricks, but clearly native speakers do not have a lot of native 

judgements about the outcome of arithmetical operations, nor are they natively very 

good at doing arithmetics online.  And, we know that there are good reasons why this 

is so:  Arithmetics is a very powerful system, provably too complex to support 

systematically native judgements about the outcomes of the operations, and provably 

to complex to do online (though bits of it can be done very fast by pocket calculators, 

as we know). 

 

So the queston is: How much power is needed, and how much power is too much? 

 

Formal language theory provides a framework for comparing different grammatical 

theories with respect to power. 
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PART 1. STRINGS, TREES AND REWRITE GRAMMARS. 

 

ALPHABETS, STRINGS, AND LANGUAGES 

 

Let A be a set. 

The set of strings on A is the set: 

 A* ={<a1,…,an>: n  0 and a1,…,an  A} 

 

The operation * is called the Kleene closure. 

 

Concatenation, 

,  is a two-place operation on A*: 

 <a1,…,an> 

 <b1,…,bm> =  <a1,…,an,b1,…,bm> 

 

-<>, the empty string, is in A*, we write e for the empty string. 

 

Another characterization of A*: 

 

 A* = {α: for some α1...αn  A such that n ≥0: α = α1

...

αn} 

 

 A*   if e  A 

A
+
 =     

 A*{e}  if e  A 

 

Facts: - 

 is associative, but not commutative.  

 (α 

 β) 


 γ = α 


 (β 


 γ) 

but not: α 

 β = β 


α 

           - e is an identity element for 

: 

   for every α  A*: e 

 α = α 


 e = e 

This means that we understand, the bracket notation in such a way that, say, <a,e,b> is 

a pair (and not a triple). 

 

Notation: we write a1…an for <a1,…,an>, hence we also identify <a> and a. 

                Note that we can write, when we want to, ab as aeb or as eeeaeebeee. 

     This is the same string, by the fact that e is an identity element. 

 

Example: 

A = {a} 

A* = {e, a, aa, aaa, aaaa, …} 

A
+
 = {a, aa, aaa, aaa, …} 

 

If α is a1…b1…bn…am, we call b1…bm a substring of α. 

A prefix of α is an initial substring of α, a suffix of α is a final substring of α. 

Fact: e is a substring of every string. 

 

α is an atom in A* if αe and the only substrings of α in A* are e and α itself. 

 

An alphabet is a set A such that every element a  A is an atom in A*.  

 

We call the elements of alphabet A symbols or lexical items. 
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Fact: If A is an alphabet, then every string in A* has a unique decomposition into  

         symbols of A. 

 

Example: {a, b, ab} would not be an alphabet, since ab is in {a,b,ab}, but it is not an 

atom.  We restrict ourselves to alphabets, because then we can define the length of a 

string: 

 

 Let A be an alphabet. 

The length of string α in A*, |α|, is the number of occurrences  

of symbols of A in α. 

Let a  A. 

|a|α is the number of occurrences of symbol a in α. 

 

Note that we do not allow the empty string to occur as a symbol in alphabet A.   

(This means that, for alphabet A, A
+ 

= A*{e}.) 

 

Note further that in calculating the length of a string, we do not count e: 

 if A = {a,b}, |aaebbeaa| = |aabbaa| = 6 

 

A language in alphabet A is a set of strings in A*: 

 L is a language in alphabet A iff L  A* 

 

Note: the theory is typically developed for languages in finite alphabets (important: 

this does not mean finite languages).  That is, the lexicon is assumed to be finite. 

 

In linguistics, the usual assumption is that the lexicon is not finite (missile, 

antimissile, antiantimissile,…).  This is mainly a problem of terminology: the formal 

notion of grammar that we will define here will not distinguish between lexical rules 

and syntactic rules (but you can easily introduce that distinction when wanted).  So, 

if the grammar contains lexical rules, the alphabet would be the finite starting set of 

irreducible lexical items. 
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TREES 
 

A partial order is a pair <A, >, where A is a non-empty set and  is a reflexive, 

 transitive, antisymmetric relation on A 

 

Reflexive: for all a  A: a  a 

Transitive: for all a,b,c  A: if a  b and b  c then a  c 

Antisymmetric: for all a,b  A: if a  b and b  a then a=b 

 

A strict partial order is a pair <A,<>, where A is a non-empty set and < is an  

irreflexive, transitive, asymmetric relation of A. 

 

Irreflexive: for all a  A: (a  a) 

Antisymmetric: for all a,b  A: if a < b then (b < a) 

 

Graphs of partial orders: 

-We don't distinguish between reflexive and irreflexive. 

-We don't write transitivity arrows. 

-The direction of the graph is understood. 

 

 

 

  o     o 

 

o  o   o  o 

 

  o  o   o  o 

 

 

A tree is a structure <A,,O,L> where: 

 1. A is a finite set of nodes. 

 2. , the relation of dominance, is a partial order on A. 

 3. 0, the topnode or origin is the minimum in : 

     for every a  A: 0  a 

 4. Non-branching upwards: 

     For every a,b,c  A: if b  a and c  a then b  c or c  b 

 5. --- 

 

This is the standard notion of tree in mathematics.  For linguistic purposes, we are 

interested in something more restricted.  Up to now the following trees are exactly the 

same tree: 

 

  o     o 

 

 o  o   o  o 

            A       A 

  o  o o  o 

  B  C B  C 
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 We want to distinguish these, and do that by adding a leftness relation L: 

 

 5. L , the leftness relation is a strict partial order on A satisfying: 

    Semi-connectedness:  

   for all a,b  A: (a  b) and (b  a) iff L(a,b) or L(b,a) 

 

Fact: L satisfies monotonicity: 

         If a  a1 and b  b1 and L(a,b), then L(a1,b1) 

 

Proof: 

1. If a  a1 and b  b1 and L(a,b), then L(a1,b1) or L(b1,a1) 

 

Assume a  a1 and b  b1 and L(a,b).   

-Assume a1  b1.  Then, by transitivity of ,  a  b1.  Since b  b1, it follows by non-

branching upward that a  b or b  a.  Then L(a,b). Contradiction. 

Hence  (a1  b1). 

-Assume b1  a1.  Then, by transitivity of , b  a1.  Then a  a1 and b  a1, and by 

non-branching upward, a  b or b  a.  Then L(a,b). Contradiction.   

Hence, (b1  a1). 

By semi-connectedness, it follows that: L(a1,b1) or L(b1,a1). 

 

2. If a  a1 and b  b1 and L(a,b), then L(a1,b1) 

 

-Assume a1  b.  Then, by transitivity of , a  b.  Contradiction. 

Hence (a1  b). 

-Assume b  a1.  Then a  a1 and b  a1 and, by non-branching upwards, a  b or  

b  a.  Contradiction. 

Hence (b  a1).   

Hence, it follows, by semi-connectedness, that L(a1,b) or L(b,a1).   

 

Assume L(b,a1).  Then L(a,b) and L(b,a1), and, by transitivity of L, L(a,a1).   

This contradicts the assumption that a  a1, so we have shown that L(b,a1). 

It follows indeed that L(a1,b).  

 

Assume, L(b1,a1).  Since we have just shown that L(a1,b), it follows, by transitivity of 

L,  that L(b1,b).  Contradiction. 

Hence L(b1,a1).  

By (1) it now follows that: L(a1,b1). 

 

 

We make the convention of leaving out Leftness from the pictures of trees, and 

assume it to be understood as left in the picture. 

 

 T1 o 1    T2 o 1 

 

 o  o 2           2 o  o 

            A       A 

  o  o o  o 

  B  C B  C 
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Thus the picture T1 summarizes the tree 

T1 = <A,,0,L1>, where: 

A = {1,2,A,B,C} 

 = {<1,1>, <1,A>, <1,2>, <1,B>, <1,C>, <A,A>,  

        <2,2>, <2,B>, <2,C>, <B,B>, <C,C>} 

0T1 = 1 

L1 = {<A,2>, <A,B>, <A,C>, <B,C>} 

 

and the picture T2 summarizes the tree 

T2 = <A,,0,L2>, where: 

A = {1,2,A,B,C} 

 = {<1,1>, <1,A>, <1,2>, <1,B>, <1,C>, <A,A>,  

        <2,2>, <2,B>, <2,C>, <B,B>, <C,C>} 

0T2 = 1 

L2 = {<2,A>, <B,A>, <C,A>, <B,C>} 

 

Given tree A.   

A labeling function L for A is a function assiging to every node in A a label  

usually a symbol or a string. 

A labeled tree is a pair <A,L>, where A is a tree, and L a labeling function for  

A. 

Given tree A. 

We know that A has a minimum 0. 

 The leaves of A are the maximal elements of A: 

 node a  A is a leaf of A iff for no b  A: a < b. 

 

 A chain in A is a subset of A linearly ordered  by : 

 C  A is a chain in A iff for all a,b  C: a  b or b  a. 

 

 A path in A (or branch in A) is a maximal chain in A: 

 chain C in A is a maximal chain iff for every chain C' in A: 

 if C  C' then C=C'. 

 

 A bar in A is a subset of A intersecting every path in A. 

 A cut in A is a minimal bar in A. 

 

Fact:  every cut in A is linearly ordered by L. 

Proof:  suppose C is a cut in A, but not linearly ordered by L. 

Then for some a,b  C, either L(a,b) or L(b,a).  Then, by semi-connectedness 

either a  b or b  a, say, a  b.   

Then C{b} is a bar in A.  Since C{b}  C, this contradicts the assumption that C 

was minimal. 

 

Corrollary: The set of leaves in A is linearly ordered by L. 

Proof: the set of leaves is a cut in A. 

 

Let T be a labeled tree in which each leaf is labeled by a string in A*.  Let the  

leaves be a1,…an in left right order, and for each node a, let l(a) be the label of  
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that node. 

 The yield of T is the string l(a1)

…

 
l(an). 

 

So, the yield of a tree is the string that you get by concatenating the strings on the 

leaves of the tree in left-right order. 

 

    Let T be a set of labeled trees of the above sort. 

 The yield of T is the set of strings: {α: for some T  T: α is the yield of T} 
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STRING REWRITE GRAMMARS 

 

A grammar is a tuple G = <VN,VT,S,P>, where: 

 1. VN, the set of non-terminal symbols, is a finite set of symbols (category  

     labels like, say, S, NP, VP, V). 

2. VT, the set of terminal symbols is a finite set of symbols (lexical items) 

 3. VN  VT = Ø. 

     V = VN  VT is called the vocabulary. 

 4. S is a designated non-terminal symbol, the start symbol. 

     S  VN. 

 5. P is a finite set of production rules. 

    Every production rule has the form: 

φ  ψ 

where φ, ψ  V*, φ  e. 

 

We read φ  ψ as: rewrite string φ as string ψ. 

 

What this means is the following: 

 

Let G be a grammar and Let α, φ, ψ  V* and let nφ be an occurrence of string φ in α 

and let α[nψ/nφ] be the result of replacing occurrence nφ of φ by an occurrence nψ of ψ 

in α.    

A rule φ  ψ allows us to rewrite string φ as string ψ in α if α contains an occurrence 

nφ of φ, and this means: replace α by α[nψ/nφ]. 

 

Example:  V NP  V DET N  

This rule allows us to rewrite the string: NP V NP PP as NP V DET N PP. 

But it doesn't allow us to rewrite the string:  John kissed NP in the garden  

as: John kissed DET N in the garden. 

 

Example:  NP  DET N 

This rule allows us to rewrite the string: NP V NP PP as NP V DET N PP 

And it allows us to rewrite the string: John kissed NP in the garden  

as: John kissed DET N in the garden. 

 

Let G be a grammar, α, β, φ, ψ  V*, R  P, where R = φ  ψ, nφ an occurrence of  

φ in α.  

 α G,R,n β, α directly dominates β by rule R at n iff β = α[nψ/nφ] 

 (β is the result of replacing occurrence nφ of φ in α by occurrence nψ of ψ. 

 

 α G,R β, α directly dominates β by rule R iff for some nφ in α, β = α[nψ/nφ] 

 

 α G β iff for some rule R  P: α G,R β ( derives from ) 

 

Let G be a grammar, φ1,…,φn  V*, R1…Rn-1 a sequence of rules from P (so rules 

from P may occur more than once in the sequence), n1…nn-1 a sequence of occurences 

of subformulas in φ1,…,φn-1  (with ni in φi) 
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<φ1,R1,1>….<φn-1,Rn-1,n-1><φn> is a derivation of φn from φ1 in G iff: 

 for every i<n:  φi G,Ri,ni φi+1 

 

Derivation <φ1,R1,1>….<φn-1,Rn-1,n-1><φn> is terminated in G iff there is no 

derivation  <φ1,R1,1>….<φn-1,Rn-1,n-1><φn,Rn,n><ψ> of some string ψ in G 

 

Thus, a derivation of φn is terminated in G if no rule of G is applicable to φn anymore. 

 

α is a terminal string generated by G iff  

 1.  There is a terminated derivation in G which starts with S and ends with α, 

                  <S,R1,1>….<α>. 

 2. α is a string of terminal symbols, i.e. α  VT*. 

 

The language generated by G, L(G), is the set of terminal strings generated by G. 

 

Grammars G and G' are weakly equivalent iff L(G) = L(G') 

 

In rule R = φ  ψ, φ and every substring of φ occurs on the left side of R, ψ and 

every substring of ψ occurs on the right side of R, φ itself occurs as the left side of R. 

 

Grammar G is in reduced form iff startsymbol S does not occur on the right side of  

any rule in G.   

 

Theorem:  For any grammar G, there is a grammar G' which is in reduced form such  

       that L(G)=L(G')  

 

Proof: 

Let G be any grammar.   

Add a new symbol S0 to VN and replace in every rule every occurrence of S by S0.   

This gives us a new set of rules P'.  Call this grammar G'. 

The language generated in G' from S0 is, of course, the same language as the language 

generated in G from S. 

Let R be a rule in the new set which contains S0 as the left side.   

Let R[S/S0] be the result of replacing in R S0 as the left side by S, leaving the right 

side unchanged.  

Add to P', for every such rule R, rule R[S/S0] to the grammar. 

Call this grammar GRED. 

GRED is obviously a grammar which is in reduced form (S does not occur on the right 

side of any rule, though S0 may well). 

And GRED generates the same language as G. 

 

This can be seen as follows. 

Suppose that in G we had a terminated derivation of a terminal string α:   

<S,R1,1><φ1,R2,2>….<φn-1,Rn-1,n-1><α>.     

This means, that in G' we have a terminated derivation of α of the form: 

 <S0,R1*,1><φ1,R2*,2>….<φn-1,Rn-1*,n-1><α> 

where Ri* is Ri if we didn't need to change it, otherwise it is the changed rule. 

Since S0 directly dominates φ1 by R1*, and since S0 is a symbol, S0 occurs as the left 

side of R1*.  But this means that that GRED contains rule R1*[S/S0], and that means 

that in GRED we have a terminated derivation of α: 
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<S,R1*[S/S0],1><φ1,R2*,2>….<φn-1,Rn-1*,n-1><α>. 

Thus, GRED generates α.  

 

Vice versa, we note that no rule in GRED contains S on the right side.  This means that 

there are no derivations in GRED where a rule R1*[S/S0] occurs in any other step 

besides the first step.  This means that for any derivation in GRED of  the form: 

<S,R,1><φ1,R2,2>….<φn-1,Rn-1,n-1><α> 

there is some rule R1* in G' such that R = R1[S/S0] and G' contains a derivation of α 

from S0: <S0,R1*,1><φ1,R2,2>….<φn-1,Rn-1,n-1><α>. 

This derivation in G' only differs from the derivation in GRED in its first step. 

This means that every derivation from S in GRED joins, in its second step, a derivation 

in G'.  And this means that GRED does not generate any terminal string from S that G' 

doesn't generate as well from S0.  And this means that indeed L(GRED)=L(G). 

This proves the theorem. 

 

Let G be a grammar in reduced form. 

Ge = G + S  e 

 Thus, Ge is the result of adding rule S  e to Ge. 

 

FACT:  L(Ge) = L(G)  {e} 

Proof:  Since S doesn't occur on the right side in any rule in G and the notion of 

grammar doesn't allow the leftside of any rule to be e, the only derivation that we can 

make in Ge that we (possibly) couldn't make before in G is the derivation: 

<S,Se><e>.  Thus we derive e in Ge, (and note that e does count as a terminal 

string, since it is an empty string of terminal symbols).   

I say 'possibly', because the fact also holds if L(G) already contained e. 

 

Note the difference between: L(G)=Ø and L(G)={e}. 

If G is a grammar with only rule: S  e, then L(G)={e}. 

If G is a grammar with only rule S  NP VP, then L(G)=Ø. 

 

 

Example 

 

S  S S 

S  a 

 

Generated language:  {a}
+
 

 

Reduced form: 

S0  S0 S0  + S  S0 S0 

S0  a    S  a 

 

   +  S  e 

 

Generated language:  {a}* 
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TYPES OF GRAMMARS 
 

Type 0: Unrestricted rewrite grammars. 

   Rules of the form: φ  ψ, where φ, ψ  V*, φ  e. 

 

Type 1: Context sensitive grammars. 

 a. Rules of the form: φ  ψ, where φ, ψ  V*, φ  e and |φ||ψ| 

            b. If G is a context sentitive grammar in reduced form, Ge is a  

    context sentitive grammar. 

 

Context sensitive grammars do not allow shortening rules:  the output of a rule must 

be at least as long as the input.  The only exception that we make is that, if the 

grammar is in reduced form, we can allow Se as the only shortening rule and still 

call the grammar context sensitive. 

 The name context sensitive comes from a different, equivalent formalization 

of the same class of grammars which we will mention below. 

 

Type 2: Context free grammars: 

 a. Rules of the form: A  ψ, where A  VN and ψ  V
+
. 

            b. If G is a context free grammar in reduced form, Ge is a  

    context free grammar. 

 

In context free grammars, the rules have a non-terminal symbol on the left side, not a 

string (so there is no context), and a non-empty string on the right. 

As before, we allow Se in a context free grammar G if G  S  e is contextfree, 

and in reduced form.  (Note, later in these notes I will liberalize the concept of context 

free grammar.)  

 

Type 3: Right linear grammars: 

 a. Rules of the form: A  αB or A  α, where A,B  VN and α  VT
+ 

            b. If G is a right linear grammar in reduced form, Ge is a  

    right linear grammar. 

 

In right linear grammars the rules have a non-terminal symbol on the left side of !, 

like in context free grammars, and on the right, a non-empty string of terminal 

symbols, or a non-empty string of terminal symbols followed by a non-terminal 

symbol (i.e. one non-terminal symbol on the right side of the produced string). 

Here too, we allow Se in a right linear grammar if the grammar is inreduced form, 

(Note: also this notion will be liberalized later.) 

 

A language L is type n iff there is a type n grammar G such that L = L(G). 

 

So a language is context free if there exists a contextf ree grammar that generates it. 

Note that every right linear language is context free, every context free language is 

context sensitive, and every context sensitive grammar is type 0.  This is because a 

right linear grammar is a special kind of context free grammar, a context free 

grammar a special kind of context sensitive grammar, a context sensitive grammar a 

special kind of type 0 grammar. 
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[Note that there are languages that don't have a grammar (meaning, not even a type 0 

grammar).  Take alphabet {a,b}.  {a,b}* is a countable set.  The set of all languages in 

alphabet {a,b} is the powerset of {a,b}*, pow({a,b}*, and Cantor has proved that that 

set is uncoutable.    

We can assume that the possible non-terminal symbols for grammars in alphabet 

{a,b} come from a fixed countable set of non-terminals.  Since grammars are finite, 

we can represent each grammar in alphabet {a,b} as a string in a 'grammar alphabet':  

say, a string:  

VT={a}--VN={SAB}--R={SSS,S A,SB,Aa,Bb} 

(so, literally think of this as a string of symbols, i.e. { is a bracket symbol, is an 

arrow symbol …}    

If the non-terminal symbols come from a fixed countable set you can prove that there 

are only countably many such strings, and hence there are only countably many 

grammars in alphabet {a,b}.  This means that there are more languages in alphabet 

{a,b} than there are grammars for languages in alphabet {a,b}, and this means by 

necessity that there are more languages in alphabet {a,b} that don't have a (type 

0) grammar at all than languages that do.  ] 

 

We call languages that don't have a grammar intractable languages. 

 

 

EXAMPLE 
G = <VN,VT,S,P> 

VN = {S, A, B, C} 

VT = {a,b,c,d} 

P =  1. S  ABC  (Context free rule) 

 2. A  aA  (Right linear rule) 

 3. A  a  (Right linear rule)   (Also left linear) 

 4. B  Bb  (Left linear rule) 

 5. B  b  (Right linear rule) 

 6. Bb ! bB  (Context sensitive rule) 

 7. BC  Bcc  (Context sensitive rule) 

 8. ab  d  (Type 0 rule) 

 9. d  ba  (Context sensitive rule) 

 

This is a Type 0 grammar. 
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Derivations: 

BCA  ,7 

BccA  ,4 

BbccA  ,2 

BbccaA ,3 

Bbccaa  ,5 

bbccaa 

 

This is a terminated derivation of bbccaa from BCA 

 

S ,1 

ABC ,3  

aBC ,7 

aBcc ,5 

abcc ,7 

dcc ,8 

bacc 

 

This is a terminated derivation of bacc from S, hence bacc is in the generated 

language. 

 

S ,1 

ABC ,3  

aBC ,7 

aBcc ,5 

abcc  

 

This is a derivation of abcc from S, but not a terminated one.  This derivation does not 

guarantee that abcc is in the generated language (in fact, it is not). 

 

S ,1 

ABC ,3  

aBC ,5 

abC 

 

This is a terminted derivation of abC from S.  Since abC is not a string of terminals, 

abC is not in the generated language, even though the derivation is from S and 

terminated. 

 

The generated language is:  b
n
a

m
 cc (n,m  1) 

This expresses that each string consists of a string of b's (minimally one), followed by 

a string of a's (minimally one), where the number of b's and a's are unrelated, 

followed by two c's. 

We know that this language is type 0.  But, in fact, the language is also generated by 

the following grammar: 
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G = <{S,A,B,C},{a,b,c},P> where 

P =  1. S  bB 

 2. B  bB 

 3. B  aA 

 4. A  aA 

 5. A  cC 

 6. C  c 

 

Since this grammar is right linear, it follows that b
n
a

m
 cc (n,m  1) is a right linear 

language. 

 

 

 

 

DERIVATIONS AND PARSE TREES 
 

Type 1 Context sensitive 

a. Rules of the form   ,  

 where ,   V*,   e and ||  || 

b. If G is in reduced form, Ge is type 1 

 

Type 1* Context sensitive in Normal Form 

a. Rules of the form A   ,  

 where A  VN, , ,    V*    e 

b. If G is in reduced form, Ge is type 1 

(Note: such rules are type 1, since they are not shortening) 

 

Type 1**  

a. Rules of the form A   /… 

 where A  VN, , ,    V*    e 

Rewrite A as  in (local) context …  

b. If G is in reduced form, Ge is type 1 

 

Example: 

 BC  BcC 

This rule is in normal form, but not uniquely:   

 B  Bc/ …C 

 C  cC/B … 

 

Theorem:  For every context sensitive grammar there is an equivalent context 

sensitive grammar in Normal Form of type 1*.  [proof omitted] 

 

Linguistically oriented books often give the type 1** definition of context sensitive 

grammars, for historic reasons:  rules in phonology used to have this format. 

However, the format was by and large only used in phonology to summarize finite 

paradigms, and it turns out to be a really rotten format to write grammars in for the 

languages that we are actually going to show to be context sensitive, while writing 

grammars in the no shortening format is easy.  Since the formats are proved to be 

equivalent, I will not ask you to give grammars in the second format. 
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I will introduce one more new concept: 

 

A context desambiguated rule is a pair <R,<α,β>>, where R is a context  

senstive rule in normal form:  αAβ  αψβ. 

 

A context desambiguated grammar is a structure G = <VN,VT,S,R>, with  

VN,VT,S, as usual, and R a finite set of context desambiguated rules.  

 

The notion of derivation stays exactly the same. 

We now specify in all our context sentive rules what the context is.  But, apart from 

that, the notion of derivation doesn't do anything with that context specification.  This 

means that, if we leave out from our context desambiguated grammar, all the context 

specifications, we get an equivalent context sensitive grammar in normal form.  

 Hence, the format of context desambiguated grammars puts no restriction on 

the generated languages: the class of all languages generated by context sensitive 

grammars is exactly the class of languages generated by context desambiguated 

grammars. 

 The difference is as follows.  We could, in a context sensitive grammar, have a 

rule of the form: R: BC  BcC.  This rule is in fact in normal form, except that it isn't 

uniquely in normal form.  We can interpret this rule as:   

 

αBβ  αBcβ, where α=e and β=C: rewrite B as Bc, when followed by C. 

 

but also as: 

 

 αCβ  αbCβ, where α=B and β=e: rewrite C as cC, when preceded by B. 

 

The only thing that the context desambiguated format does is specify which of these 

interpretations is meant: 

In the context desambiguated format we have two different rules: 

 

 R1:  <BC  BcC, <e,C>:  rewrite B to Bc before C. 

 R2:  <BC  BcC, <B,e>:  rewrite C to cB after B. 

 

And the grammar may contain R1, or R2, or both.  As said, this makes no difference in 

generative capacity, since at each step of the derivation, the effect of applying R1 or 

R2 to an input string is exactly the same as applying R to that input string:  BC gets 

rewritten as BcC. 

 But the context desambiguated format is useful when we want to assign parse-

trees to derivations. 

 

Let G be a context-desambiguated grammar, and let D = <B,R1,1>...<φn> be a 

derivation in G of φ from B, with B  VN of n steps. 

 

The parse-tree determined by D is the tree TD with topnode labelel B, yield  

φn, non-leaf nodes labeled by non-terminal symbols in VN constructed in  

the following way:    

 1. We associate with the first step of D a tree T1 , which is a tree with a single  

                 node labeled B. 
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 2. Let <φ1αAβφ2,<Ri,<α,β>>,i> be step i in D,  

                let Ti be the tree constructed for step i,  

    and let <φ1αφβφ2,Ri+1,i+1> be step i+1 in D.  

   φ1αAβφ2 is the yield of Ti. 

    In this, αAβ is the occurrence i, so each symbol in φ1αAβφ2 unambiguously  

    labels a leafnode in Ti (this is the reason for mentioning the occurrence i in  

   the derivation).  Take the leafnode in Ti that the mentioned occurrence of  A  

   labels.   

   Call this node n.       

   Tree Ti+1 is the tree which you get from Ti by attaching to node n in Ti as  

   daughter nodes,  nodes labeled by the symbols in φ, in left-right order, one  

    symbol per node.   Clearly, the yield of  Ti+1 is φ1αφβφ2. 

3. The parse-tree determined by D is tree Tn. 

 

Let G be a context-desambiguated grammar.   

A parse tree of G is a tree which is the parse tree of some derivation of G. 

 

It is easy to see that the following fact holds: 

 

FACT: In a context desambiguated grammar each derivation determines a unique  

            parse tree. 

 

This is, because in a context desambiguated grammar, the description of input step i: 

<φ1αAβφ2,<Ri,<α,β>>,i> determines a unique node in Ti for A.  This is not 

necessarily the case for context sensitive grammars that are not in the context 

desambiguated format.  For example: 

For a step like: <φ1BCφ2, BCBcC,i>, the algorithm for constructing the parse tree 

wouldn't know whether to attach B and c as daughters to B or c and C as daughters to 

C.   

Desambiguation specifies precisely that information: 

In a step: <φ1BCφ2, <BCBcC,<B,e>>,i>, you are instructed to attach c and C as 

daughters to C. 

In a step: <φ1BCφ2, <BCBcC,<e,C>>,i?, you are instructed to attach B and c as 

daughters to B. 

     S 

 

 

       

1   α  A     β    2 

 

 

 

 
 

Since contex free grammars are context desambiguated (every rule has context 

<e,e>), we get: 

 

CORROLARY: In a context free grammar each derivation determines a unique  

     parse tree. 
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Let G be a context desambiguated grammar. 

A constituent structure tree generated by G or I-tree generated by G is a  

parse tree T for G with topnode S and yield(T)  L(G), corresponding to a  

terminated derivation in G of a terminal string from S 

 

The tree set of G, T(G), is the set of all I- trees generated by G.   

 

Let G and G' be context-desambiguated grammars.  

G and G' are strongly equivalent iff T(G)=T(G'). 

 

It is easy to see that if G and G' are strongly equivalent, G and G' are weakly 

equivalent.  The inverse does not hold, though.  Different grammars may generate the 

same strings with different structures.   

Also, the same grammar may generate a string with different structures: 

 

Let G be a context desambiguated grammar and let φ  L(G). 

φ is syntactically ambiguous in G iff φ is the yield of two I-trees generated  

by G. 

 

G is syntactically ambiguous if some φ  L(G) is syntactically ambiguous in  

G. 

There is an advantage to characterizing syntactic ambiguity in terms of I- trees rather 

than directly in terms of derivations.  I- trees do not reflect the order in which the 

derivations build them.   

If the grammar generates string aa with structure: 

 

             S 

 

 A B 

 

            a           a 

 

we want to call aa unambiguous, even though the grammar may well have different 

derivations for this structure: 

SABaBaa 

SABAbaa 

This is derivational ambiguity which is non-structural.  With the notion of constituent 

structure trees we can express the difference. 

 

 

 

 

 

 

 

 

 

 

 

 


